ACULEAMINE, A SOLANOCAPSINE-TYPE STEROIDAL ALKALOID FROM SOLANUM ACULEATUM*

F. COLL, A. PREISST, M. BASTERECHEA, L. KUTSCHABSKYT, D. L. MOLA, K. SCHREIBERT and G. ADAMT

University of Havana, Cuba; †Institute for Plant Biochemistry, Academy of Sciences of the GDR, 4010 Halle/Saale, German Democratic Republic; ‡Central Institute of Molecular Biology, Academy of Sciences of the GDR, 1115 Berlin, German Democratic Republic

(Received 8 July 1983)

Key Word Index—Solanum aculeatum; Solanaceae; roots; steroidal alkaloids; solanocapsine-type alkaloids; aculeamine; X-ray analysis.

Abstract—A new solanocapsine-type alkaloid named aculeamine has been isolated from roots of Solanum aculeatum and its structure elucidated by physical methods including X-ray analysis as 22,26-epimino-22 β -methoxy-16 α ,23-epoxy-5 α ,22 α H,25 β H-cholestane-3 β -ol. The corresponding 23 β -ethoxy compound was also isolated as an artefact.

INTRODUCTION

Steroidal alkaloids of the solanocapsine group are rather scarce in the plant kingdom [2]. In a previous paper [1] we reported on the new member 3-desamino- 3β -hydroxy-solanocapsine (1) from roots of Solanum aculeatum Jacq., an endemic species from Cuba. The present communication deals with the isolation and structure of another new solanocapsine-type alkaloid named aculeamine, which was isolated from the same plant source and established as 2 by spectral data, X-ray analysis and partial synthesis. Furthermore, the corresponding ethoxy compound 5 was isolated as an artefact.

 R^1 R 1 H н н 2 H Н Me Ac Me NO Me Н Н Et 6 Ac Εt Ac **7** H NO Et

RESULTS AND DISCUSSION

Acid hydrolysis (N HCl-EtOH) of the glycosidic mixture obtained in the methanol extracts of dried roots followed by silica gel chromatography yielded a mixture of the two alkamines 2 and 5 which were separated on a AgNO₃-impregnated silica gel column. The alkaloid 2 has the elemental composition C₂₈H₄₇NO₃ ([M]⁺ found 445.3569; calc. 445.3556) and shows in the IR spectrum hydroxyl absorption at 3300-3400 cm⁻¹. The high resolution EI mass spectrum exhibits a fragment ion at m/z 413 due to the loss of methanol from the [M]+ which suggests the presence of a methoxyl group. The important solanocapsine-type fragments [3] at m/z 112 (c), 84 (d) and 70 (e), derived from rings E/F, are the same as observed for 1 [1]. On the other hand the intense ions at m/z (a, bp) and 144 (b) appear 14 mass units higher than the corresponding key ions of 1 due to the replacement of the 23-hydroxy function by methoxyl.

The 200 MHz ¹H NMR spectrum of 2 is similar to that of 1 [1] but shows an additional singlet at δ 3.18 ppm for a methoxyl group. In the ¹³C NMR spectrum of 2 signal assignments were carried out by means of the SFORD spectrum and comparison with the data of 1 [1] (Table 1). The chemical shifts values of the ring A, B, C and D carbon atoms (excepting C-15) were in good agreement ($\Delta\delta \leq 0.3$ ppm) with the corresponding data of 1. The signals C-20 to C-27 in the spectrum of 2 correspond to those of 1 but are shifted due to the methylation of the 23β -hydroxyl group. Thus, C-23 is shifted slightly downfield whereas C-24 especially suffered a remarkable highfield shift presumably because of the γ -effect of the methoxy carbon atom [4].

Acetylation of 2 with acetic anhydride-pyridine (24 hr at 20°) yielded the O,N-diacetate 3 with IR absorption at 1640 and 1735 cm⁻¹ for tertiary amide and O-acetyl, respectively. Nitrosation with nitrous acid furnished the N-nitroso derivative 4 which showed the same ORD curve as reported for N-nitroso-3-desamino-3 β -hydroxy-solanocapsine [5].

All these data suggested the alkaloid aculeamine as 22,26-epimino-23β-methoxy-16α,23-epoxy-5α,22αH,25βH-

^{*}Part 112 in the series "Solanum Alkaloids". For part 111 see ref. [1].

F. Coll et al.

Table 1. ¹³C Chemical shift data of 1, 2 and 5 [50.33 MHz, δ values (ppm) measured from the central solvent line (CDCl₃) and calculated to TMS: $\delta_{\text{TMS}} = \delta_{\text{CDCl}_3} + 77.0 \text{ ppm}$]

Carbon	1	2	5	Carbon	1	2	5
1	36.8	36.8	36.7	15	28.4+	27.8	28.2
2	31.5†	31.4†	31.4†	16	74.5	74.6	73.9
3	71.3	71.2	71.2	17	60.4	60.1	60.3
4	38.2	38.1	38.1	18	13.6	13.6	13.6
5	45.0	44.9	44.9	19	12.3	12.3	12.3
6	28.6*	28.5	28.6	20	33.0	32.0	32.9
7	31.8†	31.7†	31.8*	21	15.1	15.0	15.4
8	34.9	34.8	34.9	22	68.8	67.2	68.7
9	54.8	54.7	54.8	23	96.0	96.7	98.4
10	35.6	35.6	35.5	24	46.2	37.9	40.2
11	20.5	20.4	20.5	25	30.0	25.7	30.8
12	39.2	39.0	39.2	26	55.0	51.8	54.0
13	41.8	42.1	41.9	27	18.7	18.1	18.6
14	54.8	54.9	54.8	28	_	46.7	54.3
				29		_	15.4

^{*,†} Values bearing the same superscript may be interchanged

cholestane-3 β -ol (2). This structure was independently, confirmed by X-ray analysis of a single crystal of 2 using direct methods [6]. Crystal data: hexagonal (from acetone-water), space group P6₁; unit cell a=b=16.706, c=17.056 A; $a=\beta=90^\circ$, $\gamma=120^\circ$; Z=6; $D_x=1.0759$ cm⁻¹; R=0.079. The molecular structure is shown in Fig. 1. Finally, aculeamine 2 was synthesized from 1 by treatment with HCl gas/methanol via an elimination/addition reaction sequence similar as described earlier [7] for solanocapsine.

The alkamine 5 has the elemental composition $C_{29}H_{49}NO_3$ ([M]⁺ found 459.3724; calc. 459.3712) and shows IR absorption at 3350-3500 cm⁻¹ for hydroxyl. The high resolution EI mass spectrum displayed a fragment ion at m/z 413 due to the loss of one molecule of ethanol. Solanocapsine-type fragments [3] at m/z 112 (c), 84 (d) and 70 (e) together with the important key ions at m/z 185 (a) and 158 (b), which appeared 14 mass units

higher than found for 2, suggested structure 5 with a 23β -ethoxyl function. Corresponding to this the 200 MHz 1 H NMR spectrum of 5 exhibited additional signals for an ethyl group with a triplet (3H, J=7 Hz) at δ 1.18 for the methyl protons and a multiplet at 3.35 for the two diastereotopic methylene protons (AB-system determined by a decoupling experiment). Also the 13 C NMR spectrum is in good agreement with structure 5. The signal assignment was done by the SFORD technique and comparison with the data for 1 and 2 (Table 1).

The alkamine 5 was further characterized by its O,N-diacetyl derivative 6 and N-nitroso compound 7, the latter one showing again the characteristic negative Cotton effect for N-nitroso derivatives of the solanocapsine type [5]. Compound 5 was shown to be an artefact produced from 2 during acid hydrolysis of the glycosidic mixture with boiling ethanolic HCl. Thus, upon extraction of the plant material with iso-propanol instead of methanol followed by hydrolysis with iso-propanol-HCl only the alkaloid 2 but not 5 could be detected.

EXPERIMENTAL

Mps are corr. Optical rotations were measured in CHCl₃ and IR spectra in Nujol. UV and ORD were determined in MeOH. High resolution EIMS were recorded at 70 eV: EAMS at 16 eV. NMR were determined in CDCl₃. S. acculeatum Jacq. was collected in Guantanamo (Cuba) and identified by M. Sc. A. Arecedes. A voucher specimen is kept in the herbarium of the National Botanical Garden of Cuba, Havana.

Isolation. Dried and powdered roots (500 g) were extracted successively with CHCl₃ and with MeOH in a Soxhlet. The MeOH soln was concd to dryness under red. pres., the residue dissolved in 20% HOAc and extracted with C_6H_6 – Et_2O to remove pigments. The aq. layer was made alkalined with NH₃, the glycosidic mixture extracted with EtOH and the obtained soln concd to dryness in vacuo. The residue was refluxed with 1 N EtOH–HCl (500 ml) for 2.5 hr and poured into H₂O. Alkalization with NH₃, extraction with CHCl₃–EtOH (19:1) and evaporation of organic phase gave a residue which was chromatographed over silica gel (Merck). The progress of the separation was followed by TLC on AgNO₃ impregnated silica gel plates [8] (CHCl₃–MeOH, 9:1). Elution with CHCl₃–MeOH

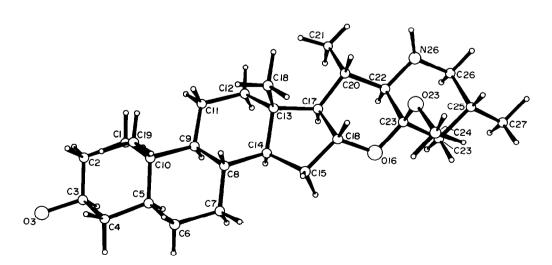


Fig. 1. Molecular structure of aculeamine (2).

(19:1) gave 250 mg of crystalline 2 + 5 of mp 167–178°. A second column chromatography on silica gel impregnated with 20% AgNO₃ [9] upon elution with CHCl₃–EtOAc (3:2) yielded 135 mg (0.008% BDM) aculeamine (2). Needles (Me₂CO–H₂O) mp 205–207°, [α]₂²⁴ + 50.8° (c 0.9), R_f 0.50. ¹H NMR: δ 0.72, 0.76 ($s \times 2$, H₃-18 and H₃-19), 0.95, 1.19 ($d \times 2$, J = 6.5 Hz, H₃-21 and H₃-27), 3.18 (s, OMe), 3.56 ($m \times 2$, H-3 α , H-22), 4.09 (m, H-16 β); EIMS m/z (rel. int.): 445 [M]⁺ (8), 430 [M – Me]⁺ (15), 413 [M – MeOH]⁺ (10), 344 (7.5), 171 [α]⁺ (100), 144 [α]⁺ (13), 112 [α]⁺ (24), 84 [α]⁺, 70 [α]⁺ (48).

Elution of the AgNO₃ impregnated silica gel column with CHCl₃-EtOAc (1:1) yielded 85 mg (0.005 % BDM) of alkamine 5. Needles (Me₂CO-H₂O) mp 183-185°, $[\alpha]_{23}^{23}$ + 45.2° (c 0.4), R_f 0.45. ¹H NMR: δ 0.72, 0.78 (s × 2, H₃-18 and H₃-19), 0.81, 0.97 (d × 2, J = 6.5 Hz, H₃-21 and H₃-27), 1.18 (t, J = 7.4 Hz, H₃-29), 3.01 (m, H-22), 3.37 (m, H₂-28), 3.56 (m, H-3 α), 4.08 (m, H-16 β). EIMS m/z (rel. int.): 459 [M]⁺ (7), 430 [M - C₂H₅]⁺ (36), 413 [M - EtOH]⁺ (14), 344 (9), 185 [a]⁺ (100), 158 [b]⁺ (14), 139 (8), 112 [c]⁺ (5), 84 [d]⁺ (10), 70 [e]⁺ (32). When in the above described extraction, hydrolysis and separation procedures MeOH and EtOH was substituted by *iso*-PrOH only aculeamine 2 could be isolated.

O,N-Diacetylaculeamine (3). A soln of 2 (20 mg) in pyridine (0.5 ml) was treated with Ac₂O (0.5 ml) at room temp for 24 hr and worked up as usual. Amorphous (12 mg), $[\alpha]_D^{25} - 31.2^{\circ}$ (c 0.4); IR γ_{max} cm⁻¹: 1735 (OAc), 1640 (>N-Ac), 1240 (OAc). EAMS m/z (rel. int.): 529 [M]⁺ (51), 511 [M - H₂O]⁺ (18), 486 [M - Ac]⁺ (8), 469 [M - AcOH]⁺ (15), 213 [a]⁺ (100), 198 (71), 186 [b]⁺ (48), 154 [c]⁺ (68), 126 (31).

N-Nitrosoaculeamine (4). To a soln of 2 (20 mg) in 1 ml HOAc satd aq. NaNO₂ soln (5 ml) was added dropwise with stirring at 0°. After extraction with CHCl₃ the organic phase was washed with 0.5 N NaOH, 0.5 N HCl and H₂O and dried over NaSO₄. Evaporation in vacuo gave a residue which was crystallized from Me₂CO-H₂O. Needles (9 mg) mp 197-198° (dec), $[\alpha]_{24}^{24}$ + 153.1° (c 0.32). UV: λ_{max} nm (s): 365 (100), 242 (4300). ORD (c 1): $[\phi]_{396}$ - 1420°; $[\phi]_{346}$ + 9480° (a-109).

Aculeamine (2) from 1. To a soln of 1 (30 mg) in MeOH (15 ml) a cold stream of dry HCl gas was bubbled until no more 1 was detected by TLC. Dilution with H_2O and alkalization with aq.

NH₃ yielded a product, which was chromatographed on silica gel (15 g). Elution with CHCl₃-MeOH (9:1) furnished 14 mg (47%) of a white solid which crystallized from Me₂CO-H₂O, needles mp $206-207^{\circ}$ and $[\alpha]_{25}^{25}+51.6^{\circ}$ (c 0.5) identical in every aspect with 2 from S. aculeatum.

Diacetyl derivative (6). Acetylation of 15 mg 5 as described for 2 yielded 8 mg amorphous 6; $[\alpha]_D^{24} - 18.1^{\circ}$ (c 0.3). IR ν_{max} cm⁻¹: 1725 (OAc), 1650 (>N-Ac). EAMS m/z (rel. int.): 543 [M]⁺ (50), 528 [M - Me]⁺ (35), 514 [M - C₂H₅]⁺ (18), 497 [M - EtOH]⁺ (74), 472 (22), 473 [M - AcOH]⁺ (17), 227 [a]⁺ (100), 212 (68), 200 [b]⁺ (42), 154 [c]⁺ (38).

N-Nitroso derivative (7). Nitrosation of 15 mg 5 as described for 2 yielded after recrystallization from Me₂CO-H₂O 7 mg 7 as needles mp 176° (dec) and $[\alpha]_D^{25} + 141.3^\circ$ (c 0.35). UV: λ_{max} nm (ϵ): 368 (100), 242 (4200). ORD (c 0.85): $[\phi]_{396} - 995^\circ$ $[\phi]_{346} + 8530^\circ$ (a-95).

Acknowledgements—We are indebted to Dr. W. Schade, Central Institute for Microbiology and Experimental Therapie Jena, for the high resolution mass spectra.

REFERENCES

- Coll, F., Preiss, A., Basterechea, M., Mola, J. L. and Adam, G. (1983) Phytochemistry 22, 2099.
- Ripperger, H. and Schreiber, K. (1982) in *The Alkaloids* (Manske, R. H. F. and Rodrigo, R. G. A., eds) Vol. XIX, p. 81. Academic Press, New York.
- 3. Ali, E., Chakravarti, A. K., Pakrashi, S. C., Biemann, K. and Highwite, C. E. (1977) Tetrahedron 33, 1371.
- Blunt, J. W. and Munro, M. H. G. (1980) Org. Magn. Reson. 13, 26.
- 5. Ripperger, H., Sych, F. J. and Schreiber, K. (1972) Tetrahedron 28, 1629.
- Kutschabsky, L., Pfeiffer, D., Coll. F. and Adam, G., in preparation.
- Mitscher, L. A., Juvarkar, J. V. and Beal, J. L. (1976) Experientia 32, 415.
- 8. Rönsch H. and Schreiber, K. (1966) Liebigs Ann. 694, 169.
- 9. Vromav, H. E. and Cohen, C. F. (1967) J. Lipid. Res. 8, 150.